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Classical limit of the harmonic oscillator Wigner functions
in the Bargmann representation

N Ripamonti
Dipartimento di Matematica, Univeraitdi Bologna, 40127 Bologna, Italy

Received 22 January 1996

Abstract. Writing the Wigner functionsW (v,,, ¥,,)(p, g¢) of any pair of harmonic oscillator
eigenstates,, v, in the Bargmann representation, a direct and detailed proof is given of their
convergence (in the sense of distributions)stp? + g2 — A) €9 at the classical limit
n— oo, h — 0,nh — A, m —n fixed, ¢ = arctar(p/q).

1. Introduction

The problem of the classical limit of the matrix elements of the quantum observables has
recently drawn much attention, both in the chaotic (see [CdV], [Com—Rob], [DEGI], [HMR],
[Zell]) as well as in the integrable and quasi-integrable case (see [Bel-Vit], [Cha], [DEGH],
[Gra—Pau], [Zel2]). A well known convenient way to study this problem is to represent the
above matrix elements through the Wigner function formalism (see e.g. [Bal-Jen], [Bar],
[Ber-Bal], [Ber], [Gro], [HOSW], [Raj], [Tak], [Vor]): given two quantum states represented
by the vectorgy, ) € £.2(R'), the corresponding Wigner functioi (v, ¢) (g, p) is defined

as follows (see e.g. [Wig])

W 9)(g. p) = /R ¢y (x - 30) ¢ (x + 39) dx (1.1)

(here(p,x) = pix1+---+ pix;,dx = dxy---dx;). The Wigner function is manifestly
defined on the phase spdké; given any classical observabf&p, ¢) and the corresponding
guantum observableg® obtained through canonical quantization, it relates the matrix
elements ofF to f in the following way:

(W, Fo) = /R W) f(p ) dpda. (1.2)

If v = {¥,(h)} :n = (n1,...,n),n, € Nis a sequence of eigenstates of a 8dimger
operator S generated by canonical quantization of an integrable classical Hamiltonian,
it is expected (for the case: = n the assertion is already strongly supported by
known stationary phase arguments; see [Ber], [Ber—Bal]) that the corresponding sequence
of matrix elements(y,, Fy,,) converge (in the sense of distributions; see below) to
S(H(p1, ... piiqus - q) — E(Aq, ..., A)) €9 at the classical limitn, — oo,

h— 0, nmh — A, k=1,...,1. Here(Aq,...,A;¢1,...,¢) are the action-angle
variables of the integrable Hamiltoniaf (p1, ..., pi; q1, ..., q), related to the(p, g) =

(p1, ..., pisq1, ..., q;) coordinates by the canonical transformatioh, ¢) = C(p, ¢), SO

that E(A1, ..., A) = H(C™Y(A, ¢)), and((m — n), ¢) = (m — n)ad1 + - - - + (m — n); .

0305-4470/96/165137+15$19.5@C) 1996 IOP Publishing Ltd 5137
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An important particular case is represented by the harmonic oscillators, namely

!
H(p,q)= 3> (pf+wigd). (1.3)
k=1

In this caseE(Ay, -+, A)) = w141 + -+ + w;A; and, if the frequenciesy : k=1,...,1
are rationally independent, the above limit is simply (always in a distributional sense)

lim W, ¥m)(p. q)

n,m—00,k=m—n
nh— A ,h—0

= 8(pi + wiq} — Av) -+ 8(p} + wlqf — A)) - €T (1.4)
Inserting in (1.2) and integrating in polar coordinates (equivalently action-angle variable)
q = v/Acose p=+Asing
this yields

21 27
(t/fn,FI/fm>—>/0 /0 F(/A1cosp, \/Arsing,, ..., /A cosgr, v/ A sing;)

w8 45y (1.5)

This last integral is nothing more than the~ourier coefficientf,(A), k = (m — n), of the
observablef over thel-torus labelled byA so that we have the identification

oo lim s Fym) = fi(A). (1.6)

nh—A,h—0

This formula, already implicitly contained in the treatise of Landau and Lifshitz ([Lan—Lif],
section 48), is furthermore the cornerstone of recent convergence proofs ([Bel-Vit, Gra—
Pa, DEGH]) of the quantum Rayleigh—Sotmger perturbation theory around a system
of non-resonant harmonic oscillators to the corresponding canonical perturbation theory at
the above classical limit. It has, however, been proved only for polynomial perturbations
f(p,q). Therefore the detailed proof of (1.4), besides its intrinsic interest (it can be,
furthermore, remarked that the identification of the limit of the Wigner function between
different eigenstates has never been made explicit so far, at least to my knowledge), has the
immediate application of extending (1.6), and hence the statement on the classical limit of
Rayleigh-Schidinger perturbation theory, to any smooth observatig, ¢).

The convergence result will be proved by writing the Wigner function in the Bargmann
representation [Bar]. An alternative approach could be tried using the coherent states (see
[DB], [DHI)).

The presentation will be as follows. In the forthcoming section 2. | begin by recalling
the construction of the Wigner function in the Bargmann representation, following essentially
[Fol], and in sectio 3 | describe the convergence proof.

2. The Wigner function in the Bargmann representation

Let us begin by recalling some well known results on the Fock—Bargmann representation
that we will use (see [Bar]); to simplify the exposition we consider a system of oscillators
with unit masses and frequencies.

Given the standard canonical coordinaigs p) € R? we introduce the complex
canonical coordinate&, z,) (Bargmann variables)

qr + ipk . qr—ipk
= Zk=

z k=1,...,n.
T2 N




Classical limit of the Wigner functions 5139

Remark thafz;, zx} = i8¢, and that the canonical quantization of these variables yields the
creation and annihilation operators of the harmonic oscillator

+ Qk + iPk Qk — iPk
ak = — ay = ———
V2 V2
where Q; and P, are the standard position and momentum operatofs’{®"). The basic
results concerning the Bargmann representation of quantum mechanics can be summarized

as follows (see e.g. [Bar]).
Proposition 2.1 Let F be the space of all entire holomorphic functions@hdefined as

F = {f : C" — Cf entire holomorphic function such that

W/ |f ()P e M da dzi < +oo}.
R2 k=1
The scalar product is
1 — _
s = s [ F@E@ g

so that|z|? = (z, 7). Herez; = x; + iy, and hence g dz; = dx; dy;.
For anyg € L%(R"), the Bargmann transform

n

(Bo)(2) = f(2) = (xh)™"/? f e W20 (1) dy (2.1)
is a unitary map betweeb?(R") and the Fock—Bargmann spageand the following unitary
equivalences hold,

BafB' =Y, BOBt=2,-Y,
BBt = 7, BPB =27, +Y

where Y, and Z, are the maximal multiplication operator by, and the maximal
differentiation operator generated by, in F, respectively.

Let us recall the definition of the Wigner function in the Bargmann representation. Given
any wavefunctiony(¢) € L>(R") the Wigner functionW v (¢, p) (see [Wig]) is given by
the expression

Wi p) = o /R ey (g — )Y (g +x) dr. (2.2)

Wi (g, p) is the simplest probability function of the simultaneous values; dor the
coordinates angh for the momenta. One has indeed

[ Wy pdo = i) fR Wy (q. p)dg = 19 ()2

and, furthermore,

Wi (q, p)dpdg = | 1%,.

Rz”
Given now any two vectorg, ¢ € £L2(R"), their Wigner distributionW (v, ¢)(g, p) is

1 . o
W, )(q, p) = W/ e@Mriy (g — x)(g + x) dx.

W (¥, ¢) can be used to express the operators through their Weyl symbols (for these notions,
see e.g. [Ber-Shu], section 5); in fact, as recalled in formula (1.2) above, the following result
holds (for the proof, see e.g. [Ber—Shu], section 5.4):
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Proposition 2.2 Given a quantum observable, i.e. an operét\oacting in L2(R™) with
Weyl symbol f(p, ¢g) the matrix elements of are given by

(Y, )2 = / W, 9)(p, @) f(p,q)dpdg. (2.:3)
The basic result about the Wigner function in the Bargmann representation is
Proposition 2.3 Let F(z), G(z) be the unitary images itf,, of the vectorsy, ¢. Then:
(1) the Wigner distributiorW (F, G)(w) is given by

W(F,G)(w) = —— / e Wh@el-20+D p (7 4 20)G(z) dz o7
(wh)?
(2) the Wigner functiolWF = W(F, F) is real, i.e.
W(F,G)=W(G,F) = WF=WF

(3) it holds that
WF(0) dodd = || F|%
R2n

(4) if A denotes the operator iA defined by the Weyl quantization of the symbalw),
its matrix elements between vectdrs V € F have the following expression through their
Wigner distribution:

(AU, V)f=/W(U, V) () A(w) do d. (2.4)

The Wigner functions in the complex variables for the harmonic oscillator eigenstates can
be expressed in terms of the Laguerre polynomlé?é, defined for non-negative and j
by

k .
() _ Ny qym (k+ ))! m
L _mz=o( V=i + mimt™

The one-dimensional, normalized eigenstates of the harmonic oscillator in the Bargmann

representation are
z k
= k=0,1,.... 2.5
V! (ﬁ) (2:5)

We can restrict our considerations to the one-dimensional case, since the eigenstates of
the n-dimensional oscillators are just products of the above one-dimensional ones and the
n-dimensional Wigner transform clearly preserves the product structure.

Proceeding exactly as in [Fol], section 2.1, and keeping track @fd#pendent factors,
we obtain:

Yi(z) =

Proposition 2.4 Let W (Y, ;) (w) be the (normalized) Wigner transform of the harmonic
oscillator eigenstategy, ;. Then

.
2 —2|w\2/ﬁ(_1)k@ VENT kg (Al for j > k
7h JiT\ 2 k h

- j—k 2
i_e‘z"‘"z/ﬁ(—l)jﬂ VN i g (A for k > j.
h JE\ 2 I h

W W, ¥j) (@) =
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3. Classical limit of Wigner function for the harmonic oscillator

It is known by the stationary phase approximation arguments (see [Ber] and [Ber—Bal]) that
the Wigner function of any eigenstate is peaked aléh@, @) = E, decays exponentially

for H(w, @) > E and oscillates foH{ (w, @) < E. In this section we make this result more
precise and find its extension to the Wigner distribution of any two eigenstates by stating
and proving the main result of this paper, namely formula (1.5) of section 1.

To compute the classical limiz — 0, k — oo, hk = A) of the Wigner distributions we
consider their expression, given in the proposition 2.4, in terms of the Laguerre polynomials
and use their asymptotic expansions.

The behaviour of Laguerre polynomialém)(x) whenk — oo andx is unrestricted
has been investigated by several authors (see [Erd] or [Mag]) and can be summarized as
follows.

Lemma 3.1 Divide the real axis into the following four distinct regions: (dnear 0, (2)
0<x <v, (3)x nearv, (4) x > v, wherev = 4k + 2.

The asymptotic behaviour of the Laguerre polynomial’ﬁ) is thus obtained through
the following expressions.

Case 1. Ifv~%3x — 0 then

'k+m+1) svx\—m/2
(m) ~ e /2 1/2
L{" () a () el
where J,, is the Bessel function of: order.
Case 2. If O< 0 < 7/2, o3 — oo andv (/2 —0) —> 400, x = vcof o then
2(=1)*(2 coso) ™™
Vrvsin2o

Case 3. Ifv = 00, x — v = o(v¥®) then

. SOk — e \Y2 p-1/2 »-1/2
o= o () () ()]

L (vcod o) ~

exp(v cos ¢/2) [sin (2(20 —sin) + %)] .

Vv

Case 4. Ifo > 0, vo® — 0o andx = v costf o then
exp[—(v/4)(sinhZ — 20)]
(2cosh”y/mvsinhz

Before stating the main result we further recall some well known relevant properties of the
Bessel functions and an equally well known limiting theorem on integrals depending on a
parameter.

L (veostto) ~ (1) exp(g costf 0)

Lemma 3.2 The Bessel function
+oo
(=1 7\ 2m+v
Jy(z) = -~ @ (Z
@ =2, mTw+m+1) (2)

is an entire function of for v =0, 1, .... It verifies the following properties.
(1) The following recurrence formulae that connect three contiguous functions hold:

Joo1(2) + Jop1(2) = 2vz271,(2)
Jo-1(2) = Jo31(z) = 2J)(2).
(2) It holds that

/z"“]v(z) dz = z""1,11(2).

m=0
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In particular,

/ 2" o(2) dz = 21 (2).

(3) The expansion of the ‘Hankel’ types for large argument and fixed order gives

Jy(2) ~ (%z)_l/z [Cos(z - %v - %)] .

(4) The Bessel functions are many valued fog£ 0,1, .... They are one valued for
all pointsz of the principal branch-n < argz < =. The values at the pointsnot on the
principal branch can be reduced to the principal ones by means of the relation

Jo(z €my = "V T (2).
(5) The following equality holds:
I (zv+3m)

o2 2n) where — Rev < Reu < 2.
F(1+3v = 3m) ;

o0
/ ", (at) dt = 2+ 1a
0

In particular,

S r(: 1
/ Ju(t)dt:%.
0 r+3v-3)

Lemma 3.3 Let f(x, n) be positive and monotonicaly decreasing faacreasesy fixed)
and let[™ ¢ (x) dx < co. Then

An o)
nleoo/ f(x,n)qb(x)dx:/ g(x)g(x) dx

provided that lim_, . &, = oo, that lim,_,, f(x,n) = g(x) uniformly on compacts, and
that there exists & A < 400 such thatf (a,n) < AVn (see [Bro] and [Wat]).

Corollary 3.1 Let f be a function of bounded variation om,].,]; if f(x,n) tends
pointwise to a constant asn — oo and fu°°¢(x) dx converges then

I 00
ILmoo/ f(x,n)qb(x)dx:C/ ¢ (x) dx.

We can now state the main result given by formula (1.5) from which it follows that the
classical limit in the sense of distribution of the Wigner function for the harmonic oscillator
W fi(Jw|) behaves as a normalized delta function supported on the classical ibits A
where A is the classical action.

Recall that, see [Gel-Shi], if is a C* hypersurface of an open subsgétof R”, the
Euclidean structure oR” induces onS a Riemannian structure, and denote kg dhe
induced surface element ¢h The Dirac delta function o8 is the distributionsy € D'(X)
defined by

(85, 9) = /Sfﬂ(X) dos (x) ¢ € Cg (X).

Then
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Proposition 3.5 If f(w) € CP(R?), j — k = m, m fixed then

2
Jim f / W(wk,l//,»xw)f(w)dwdca:% f fWAEYE o (3.1)
% 0
hk=A

where f(vVA€%) = f(~/Acosh, vAsing).
Proof. Changing to polar coordinatés|, 6, we have

im [ [ w1 dods
h—0

hk=A

2 00 ) )
= Iimf0 fo W (Wi, ¥)) (o] €) f(|o| €)|w| djw| db

k—00
h—0
hk=A

we can divide the integral into four parts according to the regions of validity of the
asymptotic expansions of the Laguerre polynomials (see lemma (3.1)). Hence the above
expression becomes

2r  pJA+R/2 sina(h) . .
lim { fo fo W, ) (0] €°) £ (0] €) 0] die] 6

k—00
h—0
hk=A

21 A+h/2 cosp(h) ) .
+ / f W (i, ;) (o] €) f(Jo| €%)|w| djw| db
0 A+h]2 sina(h)

2n  p~/A+h/2coshy () ) :
+/ / W Wk, ¥;) (o] €°) f (Jo| €)|w] djw| dO
0 ‘A+hj2cosB(h)

2 00 . .
+/ f - W, vf,-><|w|é0>f<|w|é9>|w|d|w|d9}
0 AFh]2 coshy (h)

wherea () tends to zero slower thanbut faster thak¥®, asi — 0 andg (), y (7) tend
to zero slower than but faster thark°, at the same limit.

It will be shown that the only integral giving a non-vanishing contribution is the third
one. This is in accordance with the delta function definition because only in the third
integral are we in a small neighbourhood of the othif® = A.

We proceed to compute individually the four integrals and, without losing generality,
we set from now ork < j. The same result can also be obtained in an analogous way
whenk > j. From proposition 2.4 it follows that i < j then

. 0y _ 2 g2l _ k“/H(ﬁ)m m im0 y (m) <4Iw|2)
W(lﬂk,l//j)(lwlé)—ﬂ—le ( D«/W 5 lo|™ €™ L} - . (3.2
Set

v h—i—

Integral 1 In the first integral we have

h o
0< |o| < ‘gul/zsma(h)



5144 N Ripamonti

thus the argument of the Laguerre polynomial in the Wigner function is such that

2
0< 4'2_”' < vsirt(a ().

In this situation we are in case 1 of the lemma 3.1 because we have

0< v71/374|w|2
h h

<3 sinz(a(ﬁ))ﬂ)o.

It follows that

g (B0 (PN (A0
k I k! I R

and as a consequence from 3.2 we obtain

e

The classical limit of the first integral is

. 2
W (Y, ) (lw] €%) ~ ?n(‘l)k

(VR/2)vY? sina ()
hmf f W (W, ¥)(lw| €) f (Jo| €%)|w| djw| dd
h—

hk=

(k+m m/2 2 pr(VR/2vY2sina(h)
kh—>o§ h
hk=A
) Mowl? 1/2 _
Xéme]m((v l;') )f(lwle'e)lwldlwlde.

With the change of variable = 2(v/h)Y?|w| the above limit becomes

_ k —m v sina (k) . .
lim (anl)) M /2/ / et J, (t)f(fv_l/ztew)dtd@.

h—0

hk=A

Now
. k [ —m/2 . —m/2
jm L (Y ez (V)
ey VK s
hk=A hk=A

and

k v sina(h) .
lim & 1) / / e, (t)f(fv‘l/zte”) drdo =0

provided we prove

(_1)k v sina(h)
kILngo 27tv/0 tJ,(t)dr = 0. (3.3)
A

Since f € CgO(RZ) and its arguments, in the integration interval, tend@p0), it follows
that at the limit the first integral contribution vanishes.
To prove (3.3) we proceed by induction en
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If m =0, by assertion (2) of the lemma 3.2 we have

(_1)A/71 vsina (h)
lim / tJo(t) dt = lim
h—0 2mv 0 h—0

ReplacingJ; by its Hankel expansion (see assertion (3) of lemma 3.2) we obtain

(-1 AR - _
[vsina(h)Jy (vsina(h))].

TV

. 1 AST | . . -2 . . 3 _
}11|L‘no P (=" sina(h) [Zv sma(h)} cogvsina(h) — 3m) = 0.
If m = 1, integrating by parts, by assertion (1) of lemma 3.2 we have
] (_l)A/h— v sina () . (_1)A/ﬁ tymv sina(®) v sina(h)
hlanO - /0 tJi(t)€t hl@o - [—tJo(2)] lizo - /O Jo(®)drt.

Proceeding as in thee = 0 case we see that the first term on the right-hand side vanishes
and since by assertion (5) of lemma :{[? Jo(t) dr converges we also have

-1 A/l pvsina(h)
_m—( ) / Jo(t)dt = 0.
h—0 2rv Jo

Now suppose that (3.3) holds up#pand prove it form + 1 using the well known relation
tJpi1(t) = —tJ,_1+ 2mJ,(¢t) which also follows by assertion (1) of lemma 3.2. We have

) -1 A/l vsina(h)
lim b f t Jny1(2) dt
0

h—0 27TV
) -1 A/l pvsina(h) ] -1 A/R pvsina(h)
= lim &b / tu_1(t) dt+}|mo&/ Jn(t) dr.
0 nd 0

=0 21y TV

The first limit is equal to zero by the induction hypothesis and the second one vanishes

because
v sina ()
/ Jn (1) dt
0

converges ag — 0.
Integral 2 In the second integral we have
N/ b4 _ Vi _
VI 12 T < < Y 12
o cos(2 a(h)) <lol < ¥ vV cosp(R)

where (1) tends to zero slower thain’® and faster tham®, while « (%) tends to zero
slower thani and faster than®’>.
Set

|l

7 _ _
- ‘;vl/zcow with B <o < % —a().

In this situation we are in case 2 of lemma 3.1. In fact,

B3 < vold < v (% - a(ﬁ))s

hencevo® — oo, and
va() < v (% — U) <v (% - ,3(71))

hencev(r/2 — o) — oo.
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By lemma 3.1 we have

4|w|? 2(—=D¥(2 coso )™ cofo
(m) — 7.m ~
LY ( E) L <vcosza> Grvsing) exp(v 5 >

vV T
in| - (20 —sin —
><5|n<4( o —SiN2) + 4)
and hence

WY, ¥j) (0| €%) = W (., ¥)) (Ivl/z COSGe'0>

AR (f)’" |w|™ €M (2 coso) ™
T xhJk+ m)! A (k+m)! (v sin 20)1/2

The limit of the second integral is

( (20 —sin2) + 4>.

(VR/2)v*2 cosp () _ _
lim / / W e 07 (0] €°) £ (o] €) o] djwo] dB
ko0 (VE/2)v¥2 cos(r /2—a(R))

ﬁk A

7/2—a () Ji 1\" (R +1)/2
i L e () )
"ﬁ—_’f’g BB aahyk+m)! \Vi/) \4
o N2 . v . v .
mo 172V = s _ s _
x €™M (sin 20) 5 [Sln<4(20 sin 20)) +cos(4(20 sin 20))]
xf(fv COS(re'0> do do.

Putting & — sin2 = ¢ the above limit becomes

o () ()

l —) (>
iy /Gt \Vi) (4"
hk=A
2 7 —20a(h)—sin(r —2a(h) m im6 ) v v
x/ [Zﬂ(m_sng(h) me‘ [sm<2¢>) +cos(z¢)]
xf(‘fvl/zcosa@p) é9>d¢d9.
Set

1/2 /Sin 2 (¢)
H(¢,0) = qssm?a(qbf(“/= 1/20050(¢)é9)

cos & (¢)

Note thatH (¢, 0) is a function of bounded variation in [@] (with respect tap, uniformly

with respect to). As a matter of fact, we have, g@s— 0, ¢ ~ 30° henceo ~ (231¢)1/3
and

H($,0) ~ [sin((64)/3)]"? p¥2[1 - cos(64)3)] " F(v/A )
~ 2(60)V55H2(60) (VAL = /3 F(VAE)
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where the uniform boundedness of thederivative on [Qx] follows by the de I'Hbpital
rule. Hence the limit of the second integral becomes

: / f P f?/—m <v><m+1)/2H(¢ 0)p~ "2
im N S S0 S (e i
’j;og 26()—sin 28(R) A /m/(k+m)! \4
hk=
. Vv
X [sm(zqs) + cos( ¢)] do do.
Now

n e (= m (1))
by K+ m)l A4 by \k/ 04
Tk=A Tk=A
and by the change of variable= (1/4)v¢ the integration extrema fap become
ur(h) = (1/4)v[2p (1) — sin 28(h)]
us(h) = (1/8v[r — 2a(h) — sin(r — 2a(h))]

and the limit is

2 uns(h) 12

lim / ( ) u~-“(sinu + cosu) du db.
h—0 4 f ur ()

Now H is a function of bounded variation which tends to a constant depending ordy on
ash — 0. Then, since both extrema of the integsalz) andu,(h) tend tooco and

o0
/ u~Y2(sinu + cosu) du
0
converges, by corollary 3.1 we have that the limit of the second integral also vanishes.

Integral 3 In the third integral
f 2

h .
% v2cosp(h) < coshy (h)
where (%) andy (%) tend to zero slower thahllf3 and faster than®. Since
4
v[cos B(h) — 1] < M —v < v[costt y () — 1]

we are in case 3 of lemma 3.1. In fact

_ 1 [4w)?
2/5 p2 B 2/5 2
vPBe(h) < v3/5< = v) (h)

and hence a8 — 0
4ol
h

—v = 0(1)3/5)

and

1/2
1 (40) < guen CYt e (,_ ok
AN 23

1 40)2 %2 1 Hw|?\?
o [J_1/3<3v1/2 <v |h| >+J1/3<3V1/2 <v_|i7|) ) _
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The limit of the third integral is

(Wh/2)vY? coshy () ) )
lim f f W (Wi, ;) (o] €°) f(Jo| €") |w| djw| db

’;:05 (VR/2)v¥2 cosp(h)
2r p(Vh/2vH2coshty B) q k! ;
-im = [ (R o] 2
koo th W cospdy 3/ (k+m)!
hk A

1/2 2\3/2
4w|? 1 4, 4wl
X <v -7 ) |:J_1/3<3v v — 7

21\ 3/2
+J1/3<;v‘1/2 (v— 4';_"' ) )} f (o] €)|o| diw| do.

We make the substitution

1 A2 \¥?
tzfv_l/z v — l?l .
3 h

With this change of variable the extrema of integration become
1 = tv(1—cos B(h))*/? and t = 2u(L — cosk y (i) ¥2.

Then the limit becomes

2 n m/2
m h _ 2/3,,1/3 im6
Jm ol | ¢<k+—>'(f) 4] e
hk A
i 1/2 )
x[J-1/3(1) + Jl/s(t)]f<[4 (v - (3:)2/3‘)1/3)} é9> dr do.
Ash — 0

tn~ Jvp3h) — +oo and tp~ —2vy3(h) — —o0

and sincef € CgO(RZ) and, as before,

SR i "
| m |t 2/3,1/3 -1
/;g;o T (f) [4(v (3% )]
k=A

the limit expression becomes

1 2r . 400

o E9"10]((\/2‘3'9)/ [J_1/3(t) + Ju3(2)] dr d§

0 —00

1 2r . 0
= 67/ e'mef(\/ze'g){/ [J-1/3(t) + Ji/3(2)]dt
T Jo —00
+00
+ /O [_1/a() + Jyya(0)] di | do

1 2r . ~+o00 ) )
= & / "’ f (VA ég){ f [J_1/3(€™ |£]) + Ju/3(€™ |¢])] dr
T Jo 0

+00
+‘/(; [J_1/3(t) + Jya(H)]de ¢ db.
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By assertion (4) of lemma 3.2 the above expression is equal to

1 2r ) +o0 . )
o1 ), é’"ef(ﬁé%{ fo e/ 1/3(|t]) + €73 Jy3(]t])] dt

+00
+/O [J—l/S(t) + J1/3(l)] dt} dé

and by assertion (5) of lemma 3.2 it becomes

1 (¥ ; T T T T

= ém@ Ae|9 T iein Y i iain 2) do
ano f )(cos3 |S|n3+cos3+|sm3+ )

2
i dn? £ (/Ad") do.
21

Integral 4 In the fourth integral we proceed as for the second one. In this case we have

/2coshy () < |w| < 400

wherey () tends to zero slower than’® and faster than®>.
We put
VI e
2

lw| = cosho with o > 0.

In the new variabler, the integration interval becomeg {:), co] and we are in case 4 of
lemma 3.1 becauses® > vy3(h) — oo. Hence

o (Yol vk coslt o\ exp[—(1/4)v(sinh & — 20)]
L (E = 1" (voostfo) ~ (-1 exp v 2 (2 cosho )™ [rv sinh 27]1/2

and

2 N (3>m/2 émaexp[—(1/4)v(sinh27—20)]
h /(k + m)! [vsinh 2]1/2

The limit of the fourth integral is

W (Y., wj)(‘/fvl/z coshoé%>

hm f f W (e, ) (Jwl €) f (lo] €7) o] djw| do
JVh/2)vV2 coshy ()

Vi Y
= lim / / " (sinh 2)Y/?
k~>oc v 271,'\/> 1/(k + m ( ) ( )

hk A
x exp[—(1/4)v(sinh & — 20*)]f<\/= 1/Zcoshoé">da do.

Proceeding in the same way as in the computation of the limit of the second integral, we
put ¢ =sinhz — 20 and the above limit becomes

m+1)/2 k! v
lim / / gmé ——  _exp(——-9¢
k=00 47Tf sinh(2y (i) —2y () <4) V(k+m)! ( 4 )
o)

(Sinh 27(¢))1/2f(f 1/2

S~ M7 %
X cosh2 () — 1 > cosho (¢) € ) do do.
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Putting
_(¢SinhB(@)Y? (VE 4, o

H(¢,0) = W f<2V cosho (¢) € )

since
| m/2

lim L (E) =1

koo /(K +m)l \4

Tk=A
we have to compute

p1/2 21 p4oo v
1lim / / exp(—-¢) ¢ Y?H (¢, 0)do dp.
=081 /7 Jo  Jsinhzy @y -2r ) p( 4 )

We make the change of variable = (1/4)v¢ so that the above limit becomes

1 2r oo 4
lim / f ety 12 (u,@) du do.
=04 /1 Jo  Jwaysinh 2y -2y @] v

Since H has a bounded variatiol] ((4/v)u, 0) tends to a constant depending only @&n

400
/ e "u % du
0

converges and
av[sinh 2y (B) — 2y ()]

tends toco, by corollary 3.1 the contribution of the fourth integral vanishes. This concludes
the proof of the proposition. O
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